Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let M and m be respectively the absolute maximum and the absolute minimum values of the function, f (x)=2x3 - 9x2 + 12x + 5 in the interval [0, 3]. Then M-m is equal to :
Q. Let
M
and
m
be respectively the absolute maximum and the absolute minimum values of the function,
f
(
x
)
=
2
x
3
−
9
x
2
+
12
x
+
5
in the interval
[
0
,
3
]
.
Then
M
−
m
is equal to :
2036
209
JEE Main
JEE Main 2018
Application of Derivatives
Report Error
A
5
11%
B
9
45%
C
4
16%
D
1
28%
Solution:
Given :
2
x
3
−
9
x
2
+
12
x
+
5
[
0
,
3
]
f
(
0
)
=
2
(
0
)
−
9
(
0
)
+
12
(
0
)
+
5
=
5
f
(
1
)
=
2
(
1
)
3
−
9
(
1
)
2
+
12
(
1
)
+
5
=
1
−
9
+
12
+
5
=
9
f
(
2
)
=
2
(
2
)
3
−
9
(
2
)
2
+
12
(
2
)
+
5
=
16
−
36
+
24
+
5
=
9
f
(
3
)
=
2
(
3
)
3
−
9
(
3
)
2
+
12
(
3
)
+
5
=
54
−
81
+
36
+
5
=
14
f
(
3
)
=
M
=
14
f
(
0
)
=
m
=
5
M
−
m
⇒
14
−
5
=
9