Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let l= underset x arrow ∞ textLim ∫ limits x 2 x ( dt / t ) and m = underset x arrow ∞ textLim (1/ x ln x ) ∫ limits1 x ln tdt then the correct statement is
Q. Let
l
=
x
→
∞
Lim
x
∫
2
x
t
d
t
and
m
=
x
→
∞
Lim
x
l
n
x
1
1
∫
x
ln
t
d
t
then the correct statement is
81
102
Integrals
Report Error
A
%l m =l$
B
l
m
=
m
C
l
=
m
D
l
>
m
Solution:
l
=
x
→
∞
Lim
ln
2
x
−
ln
x
=
ln
2
;
m
=
x
l
n
x
1
∫
x
l
n
t
=
x
→
∞
Lim
x
⋅
x
1
+
l
n
x
l
n
x
=
x
→
∞
Lim
1
+
l
n
x
l
n
x
=
1
Hence
l
×
m
=
ln
2
⋅
1
=
ln
2
=
l