Q.
Let K be the sum of the coefficients of the odd powers of x in the expansion of (1+x)99. Let a be the middle term in the expansion of (2+21)200. If a200C99K=n2ℓm, where m and n are odd numbers, then the ordered pair (ℓ,n) is equal to :
In the expansion of (1+x)99=C0+C1x+C2x2+….+C99x99 K=C1+C3+….+C99=298 a⇒ Middle in the expansion of (2+21)200 T2200+1=200C100(2)100(21)100 =200C100⋅250
So, 200C100×250200C99×298=101100×248
So, 10125×250=nm2ℓ ∴m,n are odd so (ℓ,n) become (50,101)