Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let ∫ ((x6-4) d x/(x6+2)1 / 4 ⋅ x4)=(l(x6+2)m/xn)+C, then (n/l m) is equal to
Q. Let
∫
(
x
6
+
2
)
1/4
⋅
x
4
(
x
6
−
4
)
d
x
=
x
n
l
(
x
6
+
2
)
m
+
C
, then
l
m
n
is equal to
55
174
Integrals
Report Error
Answer:
6
Solution:
Let
∫
(
x
6
+
2
)
1/4
:
x
n
(
x
6
−
4
)
d
x
=
∫
(
x
2
+
x
4
2
)
(
x
−
x
5
4
)
Let
x
2
+
x
4
2
=
t
4
⇒
(
x
−
x
5
4
)
d
x
=
2
t
3
d
t
⇒
I
=
2
∫
t
t
3
d
t
=
3
2
t
3
=
3
2
x
3
(
x
∘
+
2
)
3/4
+
C
=
l
m
n
=
6