Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let ∫ (d x/x2008+x)=(1/p) ln ((xq/1+xr))+C where p, q, r ∈ N and need not be distinct, then the value of (p +q+ r) equals
Q. Let
∫
x
2008
+
x
d
x
=
p
1
ln
(
1
+
x
r
x
q
)
+
C
where
p
,
q
,
r
∈
N
and need not be distinct, then the value of
(
p
+
q
+
r
)
equals
165
162
Integrals
Report Error
Answer:
6021
Solution:
I
=
∫
x
(
x
2007
+
1
)
d
x
=
∫
x
(
x
2007
+
1
)
x
2007
+
1
−
x
2007
d
x
=
∫
(
x
1
−
1
+
x
2007
x
2006
)
d
x
=
ln
x
−
2007
1
ln
(
1
+
x
2007
)
=
2007
l
n
x
2007
−
l
n
(
1
+
x
2007
)
=
2007
1
ln
(
1
+
x
2007
x
2007
)
+
C
p
+
q
+
r
=
6021