In(x)=0∫x(t2+5)ndt
Applying integral by parts In(x)=[(t2+5)nt]0x−0∫xn(t2+5)−n−1⋅2t2 In(x)=(x2+5)nx+2n0∫x(t2+5)n+1t2dt In(x)=(x2+5)nx+2n0∫x(t2+5)n+1(t2+5)−5dt In(x)=(x2+5)nx+2nIn(x)−10nIn+1(x) 10nIn+1(x)+(1−2n)In(x)=(x2+5)nx Putn=5