Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let I n =∫ limits01( x ln x ) n dx, if I 4= k ∫ limits01 x 4( ln x )3 dx, then ' k ' is equal to
Q. Let
I
n
=
0
∫
1
(
x
ln
x
)
n
d
x
, if
I
4
=
k
0
∫
1
x
4
(
ln
x
)
3
d
x
, then '
k
' is equal to
92
71
Integrals
Report Error
A
3
−
2
B
5
−
4
C
3
2
D
6
−
5
Solution:
I
n
=
0
∫
1
(
x
ln
x
)
n
d
x
I
n
=
(
(
ln
x
)
n
⋅
n
+
1
x
n
+
1
)
∣
∣
0
1
−
n
+
1
n
0
∫
1
x
n
(
ln
x
)
n
−
1
d
x
∴
I
4
=
5
−
4
0
∫
1
x
4
(
ln
x
)
3
d
x