Let 0∫4π2⋅sin2x⋅cos2x⋅etan2xdx=I, then I=0∫4π2⋅1+tan2x2tanx⋅1+tan2x1−tan2x⋅etan2xdx I=0∫4π(1+tan2x)2(1−tan2x)⋅(1+tan2x)2tanx⋅sec2x⋅etan2xdx tan2x=t 2tanx⋅sec2xdx=dt At x=0,t=0 x=4π,t=1 I=0∫1(1+t)32(1−t)⋅etdt=−20∫1(1+t)3t−1⋅etdt=−20∫1(1+t)3(t+1)−2⋅etdt=−20∫1et[(t+1)21+(1+t)3−2]dt =−2[(1+t)2et]01=−2(4e−1)=2−2e