Q.
Let g(x)=xf(x), where f(x)={x2sinx10:x=0:x=0. At x=0,
2240
223
NTA AbhyasNTA Abhyas 2020Continuity and Differentiability
Report Error
Solution:
We have, g(x)={x3sinx10:x=0:x=0
For x=0g′(x)=x3cosx1(−x21)+3x2sinx1 =−xcosx1++3x2sinx1
For x=0g′(0)=limx→0x−0g(x)−g(0)=limx→0xx3sinx1−0 =limx→0x2sinx1=0 ∴g′(x)={3x2sinx1−xcosx1,x=00,x=0 g′ is continuous at x=0
Also, g is differentiable at x=0.