Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=|x| and g(x)=[x], (where, [.] denotes the greatest integer function). Then, (f o g)' (- 1) is
Q. Let
f
(
x
)
=
∣
x
∣
and
g
(
x
)
=
[
x
]
,
(where,
[
.
]
denotes the greatest integer function). Then,
(
f
o
g
)
′
(
−
1
)
is
728
165
NTA Abhyas
NTA Abhyas 2022
Report Error
A
0
B
does not exist
C
−
1
D
1
Solution:
(
f
∘
g
)
(
x
)
=
f
(
g
(
x
))
=
f
([
x
])
=
∣
[
x
]
∣
Now, LHL of
(
f
∘
g
)
′
(
−
1
)
=
lim
h
→
0
+
−
h
(
f
∘
g
)
(
−
1
−
h
)
−
(
f
∘
g
)
(
−
1
)
=
h
→
0
+
l
im
−
h
∣
[
−
1
−
h
]
∣
−
∣
[
−
1
]
∣
=
h
→
0
+
l
im
−
h
∣
−
2
∣
−
∣
−
1
∣
=
h
→
0
+
l
im
−
h
1
→
−
∈
f
t
y
∴
(
f
o
g
)
′
(
−
1
)
does not exist.