Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=x4+|x| and I1=∫ limits0π f( cos x) d x and I2=∫ limits0(π/2) f( sin x) d x, then the value of (I1/I2) is
Q. Let
f
(
x
)
=
x
4
+
∣
x
∣
and
I
1
=
0
∫
π
f
(
cos
x
)
d
x
and
I
2
=
0
∫
2
π
f
(
sin
x
)
d
x
, then the value of
I
2
I
1
is
68
77
Integrals
Report Error
A
1
B
2
1
C
2
D
4
1
Solution:
I
1
=
0
∫
π
(
cos
4
x
+
∣
cos
x
∣
)
d
x
I
1
=
2
0
∫
2
π
cos
4
x
+
∣
cos
x
∣
d
x
↓
king
I
1
=
2
0
∫
2
π
(
sin
4
x
+
∣
sin
x
∣
)
d
x
=
2
I
2
⇒
I
2
I
1
=
2