Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=x3. Use mean value theorem to write (f(x+h)-f(x)/h)=f'(x+θ h) , with 0<θ <1 . If x≠ 0, then underseth→ 0 mathop lim θ is equal to
Q. Let
f
(
x
)
=
x
3
.
Use mean value theorem to write
h
f
(
x
+
h
)
−
f
(
x
)
=
f
′
(
x
+
θ
h
)
, with
0
<
θ
<
1
. If
x
=
0
,
then
h
→
0
lim
θ
is equal to
2706
201
J & K CET
J & K CET 2009
Continuity and Differentiability
Report Error
A
−
1
8%
B
−
0.5
12%
C
0.5
52%
D
1
28%
Solution:
Given,
f
(
x
)
=
x
3
∴
f
(
x
+
h
)
=
(
x
+
h
)
3
Now,
f
′
(
x
)
=
3
x
2
∴
f
′
(
x
+
θ
h
)
=
3
(
x
+
θ
h
)
2
Given,
h
f
(
x
+
h
)
−
f
(
x
)
=
f
′
(
x
+
θ
h
)
⇒
h
(
x
+
h
)
3
−
x
3
=
3
(
x
+
θ
h
)
2
⇒
h
x
3
+
h
3
+
3
x
h
(
x
+
h
)
−
x
3
=
3
(
x
2
+
θ
2
h
2
+
2
x
θ
h
)
⇒
h
2
+
3
x
2
+
3
x
h
=
3
x
2
+
3
θ
2
h
2
+
6
x
θ
h
⇒
3
x
=
3
θ
2
h
+
6
x
θ
Taking limit on both sides, we get
h
→
0
lim
(
h
+
3
x
)
=
h
→
0
lim
(
3
θ
2
h
+
6
x
θ
)
⇒
3
x
=
6
h
→
0
lim
θ
⇒
h
→
0
lim
θ
=
2
1
=
0.5