Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f (x)=(|x3-6x2+11x-6|/x3-6x2+11x-6), then the set of points 'a' where displaystyle limx → 0f (x) does not exist, are
Q. Let
f
(
x
)
=
x
3
−
6
x
2
+
11
x
−
6
∣
x
3
−
6
x
2
+
11
x
−
6
∣
, then the set of points
′
a
′
where
x
→
0
lim
f
(
x
)
does not exist, are
1403
228
Limits and Derivatives
Report Error
A
1
,
2
,
3
57%
B
1
,
2
,
0
15%
C
−
1
,
1
23%
D
0
,
1
5%
Solution:
We have,
f
(
x
)
=
(
x
−
1
∣
x
−
1
∣
)
(
x
−
2
∣
x
−
2
∣
)
(
x
−
3
∣
x
−
3
∣
)
=
⎩
⎨
⎧
−
1
,
x
<
1
1
,
1
<
x
<
2
−
1
,
2
<
x
<
3
1
,
x
>
3
Therefore, the limits exists at all points except at
x
=
1
,
2
,
3
.
x
→
1
−
lim
f
(
x
)
=
−
1
and
x
→
1
+
lim
f
(
x
)
=
1
Since,
x
→
1
−
lim
f
(
x
)
=
x
→
1
+
lim
f
(
x
)
So,
x
→
1
lim
f
(
x
)
does not exist.
Similarly,
x
→
a
lim
f
(
x
)
does not exist when
a
=
2
,
3
.