Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f ( x )= x 3-4 x 2-16 x +64. If ∫ limitsα4 f ( x ) dx is maximum, where α<0, then α is equal to
Q. Let
f
(
x
)
=
x
3
−
4
x
2
−
16
x
+
64
. If
α
∫
4
f
(
x
)
d
x
is maximum, where
α
<
0
, then
α
is equal to
61
127
Application of Derivatives
Report Error
A
−
4
B
-16
C
-32
D
none of these
Solution:
f
(
x
)
=
x
2
(
x
−
4
)
−
16
(
x
−
4
)
=
(
x
2
−
16
)
(
x
−
4
)
=
(
x
−
4
)
2
(
x
+
4
)
For
α
∫
4
f
(
x
)
d
x
to be maximum,
α
must be -4 .