Q.
Let f(x)=x2−4x−3,x>2 and g(x) be the inverse of f(x) . Then the value of g′(2)1 , where f(x)=2 , is (here, g′ represents the first derivative of g )
As g(f(x))=x(∵g(x)=f−1(x))
Differentiating, we get, g′(f(x))f′(x)=1 ⇒g′(f(x))=f′(x)1
when f(x)=2 ⇒x2−4x−3=2 ⇒x=5,x=−1 ∵x>2 ∴x=5 g′(2)=(2x−4)x=51 =61