Q.
Let f(x)=(x−1)(x−2)(x−3)…(x−n),n∈N and f′(n)=5040, then the value of n is
1800
204
Continuity and Differentiability
Report Error
Answer: 8
Solution:
ln(f(x))=ln(x−1)+ln(x−2)+….+ln(x−n) ⇒f′(x)=f(x)[x−11+x−21+…+x−n1] ⇒f′(x)=(x−2)(x−3)(x−n)+(x−1)(x−3)…(x−n)+….+ (x−1)(x−2)…(x−(n−1)) ⇒f′(n)=(n−1)(n−2)(n−3)⋅3⋅2⋅1( all other factors except the last vanishes when x=n ) ⇒5040=(n−1)! ⇒n=8