Q.
Let f(x)=∣∣(x−1)(x2−2x−3)∣∣+x−3,x∈R. If m and M are respectively the number of points of local minimum and local maximum of f in the interval (0,4), then m+M is equal to_____
f(x)={(x2−1)(x−3)+(x−3),x∈(0,1]∪[3,4)−(x2−1)(x−3)+(x−3),x∈[1,3] ⇒f′(x)={3x2−6x,x∈(0,1)∪(3,4)−3x2+6x+2,x∈(1,3) f(x) is non-derivable at x=1 and x=3
also f′(x)=0 at x=1+35 ⇒m+M=3