Q.
Let f(x)=x−1x+1 for all x=1 Let f1(x)=f(x),f2(x)=f(f(x)) and generally fn(x)=f(fn−1(x)) for n>1 Let P=f1(2)f2(3)f3(4)f4(5).
Which of the following is a multiple of P ?
We have, f1(x)=x−1x+1 f2(x)=f(f(x))=f(x)−1f(x)+1=x−1x+1−1x−1x+1+1=x f3=f(x),f4(x)=x P=f1(2).f2(3).f3(4).f4(5) P=3×3×35×5=75 ∴ Multiple of P is 375