Given, f(x)=sinx+2cos2x,x∈[4π,43π] ∴f′(x)=cosx−4cosx⋅sinx
and f′′(x)=−sinx−4cos2x
For maximum or minimum of f(x) Put f′(x)=0 ⇒cosx−4cosx⋅sinx=0 ⇒cosx(1−4sinx)=0 ⇒cosx=0=cos2π and sinx=41 ∵x∈[4π,43π] ⇒x=2π
Now, f′′(2π)=−sin2π−4cosπ =−1+4=3>0(min)
So, f(x) is minimum at x=2π
and its minimum value is f(2π)=sin2π+2cos22π=1−2×0=1