Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=| sec x cos x sec 2 x+ cot x ⋅ csc x cos 2 x cos 2 x csc 2 x 1 cos 2 x cos 2 x| then ∫-ππ f(x) d x has the value equal to
Q. Let
f
(
x
)
=
∣
∣
sec
x
cos
2
x
1
cos
x
cos
2
x
cos
2
x
sec
2
x
+
cot
x
⋅
csc
x
csc
2
x
cos
2
x
∣
∣
then
∫
−
π
π
f
(
x
)
d
x
has the value equal to
303
71
Integrals
Report Error
A
4
−
π
B
2
−
π
C
−
π
D
−
2
π
Solution:
R
3
→
R
3
−
(
cos
x
)
R
1
f
(
x
)
=
∣
∣
sec
x
cos
2
x
0
cos
x
cos
2
x
0
(
sec
2
x
+
cot
x
⋅
cosec
x
)
cosec
2
cos
2
x
−
sec
x
−
cot
2
x
∣
∣
=
∣
∣
sec
x
cos
2
x
0
cos
x
cos
2
x
0
sec
2
x
+
cot
2
x
⋅
cosec
x
cosec
2
x
−
(
cot
2
x
cos
2
x
)
−
sec
x
∣
∣
f
(
x
)
=
−
(
cot
2
x
cos
2
x
+
sec
x
)
(
cosec
x
−
cos
3
x
)
=
−
cos
x
sec
2
x
(
cot
2
x
cos
2
x
+
sec
x
)
=
−
(
cos
5
x
+
sin
2
x
)
=
−
π
∫
π
(
cos
5
x
+
sin
2
x
)
d
x
=
0
−
2
0
∫
π
sin
2
x
d
x
=
−
4
0
∫
π
/2
sin
2
x
d
x
=
−
π