f(x)=x∫x+3π∣sinθ∣dθ;x∈[0,π]
for maximum / minimum f′(x)=0 f′(x)=∣∣sin(x+3π)∣∣−∣sinx∣=0 ∴sin2(x+3π)=sin2x sin2(x+3π)−sin2x=0 sin(2x+3π)⋅sin3π=0 ∴2x+3π=nπ⇒x=2nπ−6π;n∈I ∴ in [0,π]x=3π or 65π
Nowf(0)=0∫π/3sinθdθ=cosθ]z/30=1−21=21 f(π)=π∫π+3π∣sinθ∣dθ=π∫34π−sinθdθ ∴f(π)=cosθ]π4π/3=2−1+1=21 f(3π)=π/3∫2π/3sinθdθ=cosθ]2π/3π/3=21−(2−1)=1 f(65π)=5π/6∫7π/6∣sinθ∣dθ=5π/6∫πsinθdθ+π∫7π/6−sinθdθ=2−3
Hence minimum value m=2−3 and maximum value M=1 ∴m+M=3−3=9−3≡p−q ∴p=9;q=3⇒p+q=12