f′(x)=5ln(1+x2)−10xtan−1x+16sinx f′′(x)=2(8cosx−5tan−1x) f′′′(x)=−2(8sinx+1+x25)<0∀x∈(0,1)
So, f′′(x) is decreasing function ∀x∈(0,1) ∴f′′(x)>f′′(1)⇒f′′(x)>0 ⇒f′(x) is increasing function for x>0 f′(x)>f′(0) f′(x)>0. ⇒f(x) is increasing function for x>0
Hence, f(x)>f(0) ⇒f(x)>0 ∴0∫xf(y)dy is increasing for all x∈(0,1)