Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let F (x)=f (x)+f((1/x)), where f(x)=∫ limitsx1(log t/1+t)dt. Then F(e) equals
Q. Let
F
(
x
)
=
f
(
x
)
+
f
(
x
1
)
,
where
f
(
x
)
=
1
∫
x
1
+
t
l
o
g
t
d
t
. Then
F
(
e
)
equals
3387
226
AIEEE
AIEEE 2007
Integrals
Report Error
A
2
1
50%
B
0
17%
C
1
25%
D
2
8%
Solution:
f
(
x
)
=
1
∫
x
1
+
t
l
o
g
t
d
t
f
(
e
)
=
f
(
e
)
+
f
(
e
1
)
f
(
e
)
=
1
∫
e
1
+
t
l
o
g
t
d
t
+
1
∫
1/
e
1
+
t
l
o
g
t
d
t
=
1
∫
e
1
+
t
l
o
g
t
d
t
+
1
∫
e
t
(
1
+
t
)
l
o
g
t
d
t
=
1
∫
e
1
+
t
l
o
g
t
d
t
=
2
1
.