Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) = ex - x and g(x) x2 -x, ∀ x ∈ R. Then the set of all x ∈ R, where the function h(x) = (fog) (x) is increasing, is :
Q. Let
f
(
x
)
=
e
x
−
x
and
g
(
x
)
x
2
−
x
,
∀
x
∈
R
.
Then the set of all
x
∈
R
, where the function
h
(
x
)
=
(
f
o
g
)
(
x
)
is increasing, is :
4448
220
JEE Main
JEE Main 2019
Application of Derivatives
Report Error
A
[
−
1
,
2
−
1
]
∪
[
2
1
,
∞
)
50%
B
[
0
,
2
1
]
∪
[
1
,
∞
)
50%
C
[
2
−
1
,
0
]
∪
[
1
,
∞
)
0%
D
[
0
,
∞
)
0%
Solution:
h
(
x
)
=
f
(
g
(
x
)
)
⇒
h
′
(
x
)
=
f
′
(
g
(
x
)
)
.
g
′
(
x
)
and
f
′
(
x
)
=
e
x
−
1
⇒
h
′
(
x
)
=
(
e
g
(
x
)
−
1
)
⇒
h
′
(
x
)
=
(
e
x
2
−
x
−
1
)
and
(
2
x
−
1
)
≥
0
Case-I
e
x
2
−
x
≥
1
and
2
x
−
1
≥
0
⇒
x
∈
[
1
,
∞
]
...(1)
Case-II
e
x
2
−
x
≤
1
and
2
x
−
1
≤
0
⇒
x
∈
[
0
,
2
1
]
...(2)
Hence,
x
∈
[
0
,
2
1
]
∪
[
1
,
∞
]