Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) = ex, g(x) = sin-1 x and h(x) =f[g(x)], then (h'(x)/h(x)) is equal to
Q. Let
f
(
x
)
=
e
x
,
g
(
x
)
=
s
i
n
−
1
x
and
h
(
x
)
=
f
[
g
(
x
)]
, then
h
(
x
)
h
′
(
x
)
is equal to
2198
223
Continuity and Differentiability
Report Error
A
e
s
i
n
−
1
x
16%
B
1
−
x
2
1
57%
C
s
i
n
−
1
x
17%
D
(
1
−
x
2
)
1
10%
Solution:
f
(
x
)
=
e
x
and
g
(
x
)
=
s
i
n
−
1
x
and
h
(
x
)
=
f
[
g
(
x
)]
⇒
h
(
x
)
=
f
(
s
i
n
−
1
x
)
=
e
s
i
n
−
1
x
∴
h
′
(
x
)
=
e
s
i
n
−
1
x
(
1
−
x
2
1
)
=
h
(
x
)
⋅
1
−
x
2
1
⇒
h
(
x
)
h
′
(
x
)
=
1
−
x
2
1