f(x)=cosxsin2x=cosx(2sinxcosx) =2sinx(1−sin2x)=2sinx−2sin3x
min. f(x)= min.g(t) where g(t)=2t−2t3 x∈[−π,π], t∈[−1,1] g′(t)=2−6t2=0 ⇒t=±3​1​,g′′(t)=−12t ∴g′′(3​1​)<0 and g′′(−3​1​>0)
Hence min. g(t)=g(−3​1​),t∈[−1,1] =−3​2​+2⋅33​1​ =−33​4​>−97​>−79​