Q.
Let f(x):cosx(cosx+sinx)=[x], where [⋅] represent the greatest integer function, the interval for which x is domain of f(x), is
1584
212
Complex Numbers and Quadratic Equations
Report Error
Solution:
f(x):cosx(cosx+sinx)=[x] ⇒cos2x+sinxcosx=[x] ⇒cos2x+sin2x=2[x]−1 (Multiply by 2 on both sides
and use formula cos2x=2cos2x−1) ⇒2sin(2x+4π)=2[x]−1 ⇒−2≤2[x]−1≤2 ⇒21−2≤[x]≤22+1 ⇒[x]=0,1∴[x]=0,[x]=1 ⇒x∈[0,1) and x∈[1,2)