Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) be continuous on [0,6] and differentiable on (0,6). Let f(0)=12 and f(6)=-4 If g(x)=(f(x)/x+1), then for some Lagrange's constant c ∈(0,6), g prime(c)=
Q. Let
f
(
x
)
be continuous on
[
0
,
6
]
and differentiable on
(
0
,
6
)
. Let
f
(
0
)
=
12
and
f
(
6
)
=
−
4
If
g
(
x
)
=
x
+
1
f
(
x
)
, then for some Lagrange's constant
c
∈
(
0
,
6
)
,
g
′
(
c
)
=
2574
214
TS EAMCET 2018
Report Error
A
−
3
44
B
−
21
22
C
21
32
D
−
21
44
Solution:
According to Lagrange's Mean value theorem
g
′
(
c
)
=
6
−
0
g
(
6
)
−
g
(
0
)
=
6
6
+
1
f
(
6
)
−
0
+
1
f
(
0
)
=
6
−
7
4
−
12
=
−
42
88
=
−
21
44