Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f (x) be a quadratic expression which is positive for all real values of x. If g(x) = f (x) + f ' (x) + f (x), then for any real x
Q. Let
f
(
x
)
be a quadratic expression which is positive for all real values of
x
. If
g
(
x
)
=
f
(
x
)
+
f
′
(
x
)
+
f
"
(
x
)
,
then for any real
x
1996
244
IIT JEE
IIT JEE 1990
Complex Numbers and Quadratic Equations
Report Error
A
g
(
x
)
<
0
11%
B
g
(
x
)
>
0
37%
C
g
(
x
)
=
0
31%
D
g
(
x
)
≥
0
21%
Solution:
Let
f
(
x
)
=
a
x
2
+
b
x
+
c
>
0
,
∀
x
∈
R
⇒
a
>
0
and
b
2
−
4
a
c
<
0
...(i)
∴
g
(
x
)
=
f
(
x
)
+
f
′
(
x
)
+
f
′′
(
x
)
⇒
g
(
x
)
=
a
x
2
+
b
x
+
c
+
2
a
x
+
b
+
2
a
⇒
g
(
x
)
=
a
x
2
+
x
(
b
+
2
a
)
+
(
c
+
b
+
2
a
)
whose discriminant
=
(
b
+
2
a
)
2
−
4
a
(
c
+
b
+
2
a
)
=
b
2
+
4
a
2
+
4
ab
−
4
a
c
−
4
ab
−
8
a
2
=
b
2
−
4
a
2
−
4
a
c
=
(
b
2
−
4
a
c
)
<
0
[ from Eq. (i) ]
∴
g
(
x
)
>
0
,
∀
x
,
as
a
>
0
and discriminant
<
0
.
Thus,
g
(
x
)
>
0
,
∀
x
∈
R
.