Q.
Let f(x) be a polynomial of even degree satisfying f(2x)(1−f(2x1))+f(16x2y)=f(−2)−f(4xy) for all x,y∈R∼{0} and f(4)=−255,f(0)=1. Then the value of ∣∣2f(2)+1∣∣ is
Solution: Replacing y by 8x21 in the given functional equation, we obtain f(2x)(1−f(2x1))+f(2)=f(−2)−f(2x1).
Since f is an even function so f(2)=f(−2), so f(2x)−f(2x)f(2x1)=−f(2x1) ⇒f(2x)+f(2x1)=f(2x)f(2x1)
Replacing x by 2x, we have f(x)+f(x1)=f(x)f(x1)
Since f is a polynomial, so f(x)=±xn+1 (see Example 88) But −255=f(4)=±4n+1.
nly negative sign is possible, thus 4n=256⇒n=4.
i.e. f(x)=−x4+1.f(2)=−24+1=−15∣∣2f(2)+1∣∣=∣∣−214∣∣=7