Q.
Let f(x) be a function such that 2f(x)f(x−1)+f(x+1)=sin60∘ and f(7)=21, then the value of r=0∑5f(7+12r) is equal to
135
126
Relations and Functions - Part 2
Report Error
Solution:
f(x−1)+f(x+1)=3f(x)....(1)
Replace x by (x−1) and x by (x+1), we get f(x−2)+f(x)=3f(x−1)....(2) f(x)+f(x+2)=3f(x+1)....(3)
Adding (2) and (3), we get f(x−2)+f(x+2)+2f(x)=3(f(x−1)+f(x+1))=3f(x) ⇒f(x−2)+f(x+2)=f(x) ....(4) Replace x by (x+2), we get f(x)+f(x+4)=f(x+2)....(5)
Replace x by (x+2), we get f(x)+f(x+4)=f(x+2)
Adding (4) and (5), we get f(x−2)+f(x+4)=0
Replace x by (x+2) f(x+6)+f(x)=0....(6)
Replace x by (x+6), we get f(x+12)+f(x+6)=0....(7)
From (7) −(6), f(x+12)−f(x)=0⇒f(x+12)=f(x) ∴f(x) is periodic with period 12 . ∴r=0∑5f(7+12r)=r=0∑5f(7)=6f(7)=3