Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f ( x ) be a differentiable function such that f ( x + y )= e x f ( y )+ e y f ( x ) ∀ x , y and f prime(0)=1. Then the area bounded by the curve y=f(x) and x-axis, is
Q. Let
f
(
x
)
be a differentiable function such that
f
(
x
+
y
)
=
e
x
f
(
y
)
+
e
y
f
(
x
)
∀
x
,
y
and
f
′
(
0
)
=
1
. Then the area bounded by the curve
y
=
f
(
x
)
and
x
-axis, is
437
105
Differential Equations
Report Error
A
1
B
2
1
C
2
D
e
Solution:
f
′
(
x
+
y
)
=
e
x
f
(
y
)
+
e
y
f
′
(
x
)
Put
x
=
0
f
′
(
y
)
=
f
′
(
y
)
+
e
y
∴
f
′
(
x
)
−
f
(
x
)
=
e
x
L.F.
=
e
−
x
f
(
x
)
e
−
x
=
x
+
C
f
(
0
)
=
0
⇒
C
=
0
f
(
x
)
=
x
e
x
A
=
∣
∣
−
∞
∫
0
x
e
x
d
x
∣
∣
=
x
e
x
∣
−
x
0
−
e
x
∫
−
x
p
=
0
−
(
1
)
=
1