Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f (x) = ax2 + bx + c, a ≠ 0 and Δ =b2 -4ac. If α + β, α2+ β2 and α 3+ β3 are in GP, then
Q. Let
f
(
x
)
=
a
x
2
+
b
x
+
c
,
a
=
0
and
Δ
=
b
2
−
4
a
c
.
If
α
+
β
,
α
2
+
β
2
and
α
3
+
β
3
are in GP, then
2703
190
IIT JEE
IIT JEE 2005
Sequences and Series
Report Error
A
Δ
=
0
21%
B
b
Δ
=
0
25%
C
c
Δ
=
0
29%
D
b
c
=
0
24%
Solution:
Since,
(
a
+
β
)
,
(
a
2
+
β
2
)
,
(
a
3
+
β
3
)
are in GP
⇒
(
a
2
+
β
2
)
2
=
(
a
+
β
)
(
a
3
+
β
3
)
⇒
a
4
+
β
4
+
2
a
2
β
2
=
a
4
+
β
4
+
a
β
3
+
β
a
3
⇒
a
β
(
a
2
+
β
2
−
2
a
β
)
=
0
⇒
a
β
(
a
−
β
)
2
=
0
⇒
a
β
=
0
or
a
=
β
⇒
a
c
=
0
or
Δ
=
0
⇒
c
Δ
=
0