Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f ( x )= ax 2+ bx + c ( a < b ) and f ( x ) ≥ 0 ∀ x ∈ R. Find the minimum value of ( a + b + c / b - a ).
Q. Let
f
(
x
)
=
a
x
2
+
b
x
+
c
(
a
<
b
)
and
f
(
x
)
≥
0∀
x
∈
R
. Find the minimum value of
b
−
a
a
+
b
+
c
.
482
147
Relations and Functions - Part 2
Report Error
Answer:
3
Solution:
f
(
1
)
=
a
+
b
+
c
f
(
−
2
)
=
4
a
−
2
b
+
c
hence
f
(
1
)
−
f
(
−
2
)
=
3
(
b
−
a
)
E
=
b
−
a
a
+
b
+
c
=
f
(
1
)
−
f
(
−
2
)
3
f
(
1
)
=
1
−
f
(
1
)
f
(
−
2
)
3
Hence
E
m
i
n
.
occurs when
f
(
−
2
)
=
0
Hence
E
m
i
n
.
=
3