We have f(x)=(tan−1x)3+(cot−1x)3=(tan−1x+cot−1x)((tan−1x)2−(tan−1x)(cot−1x)+(cot−1x)2) =2π((tan−1x)2−(tan−1x)(2π−tan−1x)+(2π−tan−1x)2)(Usingcot−1x=2π−tan−1x) =23π((tan−1x−4π)2+48π2)
Clearly, f(x) will be minimum when (tan−1x−4π)2=0
and f(x) will be maximum when (tan−1x−4π)2=(−2π−4π)2 ∴a=f(x)min=23π(0+48π2)=32π3 and b=f(x)max=23π((4−3π)2+48π2)=87π3
Hence ab=32π387π3=28