Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=5 x tan x+8 sin ( tan x)+5 ln ( cos x), x ∈((-π/4), 0) then
Q. Let
f
(
x
)
=
5
x
tan
x
+
8
sin
(
tan
x
)
+
5
ln
(
cos
x
)
,
x
∈
(
4
−
π
,
0
)
then
190
104
Application of Derivatives
Report Error
A
f
(
x
)
is strictly increasing in
(
4
−
π
,
0
)
.
B
f
(
x
)
has a point of local maximum.
C
the equation
f
(
x
)
=
0
has a root in
(
4
−
π
,
0
)
D
f
(
x
)
<
0
for all
x
∈
(
4
−
π
,
0
)
.
Solution:
:
f
(
x
)
=
5
x
tan
x
+
8
sin
(
tan
x
)
+
5
ln
(
cos
x
)
,
x
∈
(
4
−
π
,
0
)
⇒
f
′
(
x
)
=
sec
2
x
(
5
x
+
8
cos
(
tan
x
))
For
x
∈
(
4
−
π
,
0
)
,
5
x
∈
(
−
3.9
,
0
)
and
8
cos
(
tan
x
)
>
4
Hence,
f
′
(
x
)
>
0
for
x
∈
(
4
−
π
,
0
)
]