Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=(4 x2-3 x+1/∫ limits02 π x sin 4 t d t). If f prime((1/2))=(p/q π), p, q ∈ N, then (p-q) equal
Q. Let
f
(
x
)
=
0
∫
2
π
x
s
i
n
4
t
d
t
4
x
2
−
3
x
+
1
. If
f
′
(
2
1
)
=
q
π
p
,
p
,
q
∈
N
, then
(
p
−
q
)
equal
85
85
Integrals
Report Error
A
6
B
5
C
4
D
3
Solution:
f
(
x
)
=
0
∫
2
π
x
s
i
n
2
t
d
t
4
x
2
−
4
x
+
1
+
x
=
0
∫
2
π
x
s
i
n
4
t
d
t
(
2
x
−
1
)
2
+
0
∫
2
π
x
s
i
n
4
t
d
t
x
f
′
(
x
)
=
g
′
(
x
)
+
(
0
∫
2
π
x
s
i
n
4
t
d
t
)
2
0
∫
2
π
x
s
i
n
4
t
d
t
⋅
1
−
x
s
i
n
4
(
2
π
x
)
⋅
2
π
f
′
(
2
1
)
=
g
⋅
(
2
1
)
+
0
∫
π
s
i
n
4
t
d
t
1
=
0
+
2
⋅
16
3
π
1
=
3
π
8
⇒
p
−
q
=
5