Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=(2 x3/3)-(x ln |x|-x)-k x+10. If f(x) is strictly increasing for every x ∈ R- 0 then the maximum integral value of k is
Q. Let
f
(
x
)
=
3
2
x
3
−
(
x
ln
∣
x
∣
−
x
)
−
k
x
+
10
. If
f
(
x
)
is strictly increasing for every
x
∈
R
−
{
0
}
, then the maximum integral value of
k
is
309
126
Application of Derivatives
Report Error
A
0
B
1
C
2
D
3
Solution:
f
′
(
x
)
=
2
x
2
−
ln
∣
x
∣
−
k
≥
0∀
x
∈
R
−
{
0
}
k
≤
2
x
2
−
ln
∣
x
∣∀
x
∈
R
−
{
0
}
Hence,
k
≤
minimum value of
2
x
2
−
ln
∣
x
∣
∴
k
≤
2
1
+
ln
2
Hence, maximum integral value of
k
is 1 .