Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)= begincases2-|x2+5 x+6|, x ≠-2 b2+1, x=-2 endcases. If f(x) has relative maximum at x=-2, then the range of the b, is
Q. Let
f
(
x
)
=
{
2
−
∣
∣
x
2
+
5
x
+
6
∣
∣
,
b
2
+
1
,
x
=
−
2
x
=
−
2
. If
f
(
x
)
has relative maximum at
x
=
−
2
, then the range of the
b
, is
1070
136
Application of Derivatives
Report Error
A
∣
b
∣
≥
1
B
∣
b
∣<
1
C
b
>
1
D
b
<
1
Solution:
As,
f
(
x
)
has relative maximum at
x
=
−
2
,
So
f
(
−
2
)
≥
x
→
−
2
Lim
f
(
x
)
⇒
b
2
+
1
≥
x
→
−
2
Lim
(
2
−
∣
∣
x
2
+
5
x
+
6
∣
∣
)
⇒
b
2
≥
1
⇒
∣
b
∣
≥
1