Q.
Let f(x)=2(tan)3x−6(tan)2x+1+sgn(ex),∀x∈[−4π,4π]. Then the positive difference between the least value and the local maximum value of the function is (where sgn(f(x) represents the signum function)
1596
227
NTA AbhyasNTA Abhyas 2020Application of Derivatives
Report Error
Solution:
Here, sgn(ex)=1
Let tanx=t⇒t∈[−1,1]∵x∈[−4π,4π] ∴f(t)=2t3−6t2+2 ⇒f′(t)=2[3t2−6t] =6t(t−2) ∴f(−1)=2[−1−3+1]=−6 f(1)=2[1−3+1]=−2 f(0)=2 ∴ Least value =−6
Local maximum value =2 ∴ the required positive difference =8