Given, f(x)=(2a+b)cos−1x+(a+2b)sin−1x =(2a+b)cos−1x+(a+2b)(2π−cos−1x)=(a−b)cos−1x+(a+2b)2π.
Clearly, domain of f(x)=[−1,1] and f(x) is a continuous decreasing function on [−1,1].
So, range of f(x)=[fmin(x=1),fmax(x=−1)]
Now, fmin(x=1)=(a+2b)2π and fmax(x=−1)=(a−b)π+(a+2b)2π=3a2π. ⇒ Range of f(x)=[(a+2b)2π,3a2π]
As, Domain of f and range of f are the same set,
So, (a+2b)2π=−1
... (1) and 3a2π=1 ....(2) ∴ On solving (1) and (2) we get a=3π2 and b=3π−4
Hence, π(a−b)=π(3π2+3π4)=32+34=36=2.