Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: r arrow R he such that f (1) = 3 and f ' (1) = 6. Then, lim x → 0 [ ( f (1 + x)/ f (1) )]1/x equals
Q. Let f :
r
→
R
he such that f (1) = 3 and f ' (1) = 6. Then,
l
i
m
x
→
0
[
f
(
1
)
f
(
1
+
x
)
]
1/
x
equals
2300
218
IIT JEE
IIT JEE 2002
Report Error
A
1
B
e
2
1
C
e
2
D
e
3
Solution:
Let y =
[
f
(
1
)
f
(
1
+
x
)
]
1/
x
⇒
l
o
g
y
=
x
1
{
l
o
g
f
(
1
+
x
)
−
l
o
g
f
(
1
)]
⇒
l
i
m
x
→
0
l
o
g
y
=
l
i
m
x
→
0
[
f
(
1
+
x
)
1
.
f
′
(
1
+
x
)
]
[using L' Hospital's rule]
=
f
(
1
)
f
(
1
)
=
3
6
⇒
l
o
g
(
l
i
m
x
→
0
y
)
=
2
⇒
l
i
m
x
→
0
y
=
e
2