Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R arrow R be such that f(1)=3 and f'(1)=6 . Then, displaystyle lim x arrow 0[(f(1+x)/f(1))]1 / x equals
Q. Let
f
:
R
→
R
be such that
f
(
1
)
=
3
and
f
′
(
1
)
=
6.
Then,
x
→
0
lim
[
f
(
1
)
f
(
1
+
x
)
]
1/
x
equals
2651
195
Manipal
Manipal 2012
Report Error
A
1
B
e
1/2
C
e
2
D
e
3
Solution:
Let
y
=
[
f
(
1
)
f
(
1
+
x
)
]
1/
x
⇒
lo
g
y
=
x
1
[
lo
g
f
(
1
+
x
)
−
lo
g
f
(
1
)]
⇒
x
→
0
lim
lo
g
y
=
x
→
0
lim
x
[
lo
g
f
(
1
+
x
)
−
lo
g
f
(
1
)]
⇒
x
→
0
lim
lo
g
y
=
x
→
0
lim
[
f
(
1
+
x
)
1
f
′
(
1
+
x
)
]
(using L' Hospital's rule)
=
f
(
1
)
f
′
(
1
)
=
3
6
=
2
⇒
x
→
0
lim
y
=
e
2