Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R arrow R be a function which satisfies f ( x + y )= f ( x )+ f ( y ) ∀ x , y ∈ R . If f (1)=2 and g(n)= displaystyle∑k=1(n-1) f(k), n ∈ N then the value of n, for which g(n)=20, is :
Q. Let
f
:
R
→
R
be a function which satisfies
f
(
x
+
y
)
=
f
(
x
)
+
f
(
y
)
∀
x
,
y
∈
R
.
If
f
(
1
)
=
2
and
g
(
n
)
=
k
=
1
∑
(
n
−
1
)
f
(
k
)
,
n
∈
N
then the value of
n
,
for which
g
(
n
)
=
20
,
is :
4504
223
JEE Main
JEE Main 2020
Sequences and Series
Report Error
A
5
34%
B
9
16%
C
20
26%
D
4
23%
Solution:
f
(
x
+
y
)
=
f
(
x
)
+
f
(
y
)
⇒
f
(
n
)
=
n
f
(
1
)
f
(
n
)
=
2
n
g
(
n
)
=
k
=
1
∑
n
−
1
2
n
=
2
(
2
(
n
−
1
)
n
)
=
n
(
n
−
1
)
g
(
n
)
=
20
⇒
n
(
n
−
1
)
=
20
n
=
5