Q.
Let f:R→R be a function such that f(3x+y)=3f(x)+f(y),f(0)=0 and f′(0)=3 . Then
3239
204
Continuity and Differentiability
Report Error
Solution:
We have f(3x+y)=3f(x)+f(y),f(0)=0 and f′(0)=3 f′(x)=h→0limhf(x+h)−f(x)=h→0limhf(33x+3h)−f(x) =h→0limh3f(3x)+f(3h)−3f(3x)+f(0)=h→0lim3hf(3h)−f(0)=3 ∴f(x)=3x+c,∵f(0)=0⇒c=0 ∴f(x)=3x