Q.
Let f:R→R be a continuous function defined by f(x)=ex+2e−x1. Statement-1:f(c)=31, for some cϵR. Statement-2:0<f(x)≤221, for all xϵR
2315
213
AIEEEAIEEE 2010Application of Derivatives
Report Error
Solution:
f(x)=ex+2e−x1=e2x+2ex f′(x)=(e2x+2)2(e2x+2)ex−2e2x⋅ex f′(x)=0⇒e2x+2=2e2x e2x=2⇒ex=2
maximum f(x)=42=221 0<f(x)≤221∀x∈R
Since 0<31<221 for some c∈R f(c)=31