Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R arrow R and g: R arrow R be continuous functions. Then, the value of the integral ∫ limits-π / 2π / 2[f(x)+f(-x)][g(x)-g(-x)] d x is
Q. Let
f
:
R
→
R
and
g
:
R
→
R
be continuous functions. Then, the value of the integral
−
π
/2
∫
π
/2
[
f
(
x
)
+
f
(
−
x
)]
[
g
(
x
)
−
g
(
−
x
)]
d
x
is
2090
237
IIT JEE
IIT JEE 1990
Integrals
Report Error
A
π
27%
B
1
40%
C
2
0%
D
0
33%
Solution:
Let
I
=
−
π
/2
∫
π
/2
[
f
(
x
)
+
f
(
−
x
)]
[
g
(
x
)
−
g
(
−
x
)]
d
x
Let
ϕ
(
x
)
=
[
f
(
x
)
+
f
(
−
x
)]
[
g
(
x
)
−
g
(
−
x
)]
⇒
ϕ
(
−
x
)
=
[
f
(
−
x
)
+
f
(
x
)]
[
g
(
−
x
)
−
g
(
x
)]
⇒
ϕ
(
−
x
)
=
−
ϕ
(
x
)
⇒
ϕ
(
x
)
is an odd function.
∴
−
π
/2
∫
π
/2
ϕ
(
x
)
d
x
=
0