Q.
Let f:R−{45}→R be a function defined as f(x)=4x+55x The inverse of f is the map g: Range f→R−{45} gives by f−1(x)=abyax then the value of a+b is
1722
202
Relations and Functions - Part 2
Report Error
Answer: 1
Solution:
Given f(x)=4x+55x;x∈R−{45}
Let f(x)=y⇒x=f−1(y) ∴y=4x+55x ⇒4xy+5y=5x 5y=5x−4xy=x(5−4y) ⇒x=5−4y5y g(y)=f−1(y)=5−4y5y;R−{45}
or g(x)=f−1(x)=5−4x5x ⇒a+bxax=5−4x5x ⇒a=5,b=−4
Hence, a+=5−4=1