Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f:(-∞,-1] arrow((π/2), π] be defined as f(x)= sec -1(-x2+x+a). If f(x) is surjective, then the range of a is
Q. Let
f
:
(
−
∞
,
−
1
]
→
(
2
π
,
π
]
be defined as
f
(
x
)
=
sec
−
1
(
−
x
2
+
x
+
a
)
. If
f
(
x
)
is surjective, then the range of
a
is
591
126
Inverse Trigonometric Functions
Report Error
A
{
1
}
B
{
4
−
5
}
C
(
−
∞
,
4
−
5
]
D
(
−
∞
,
1
]
Solution:
For
f
(
x
)
to be surjective.
Range of
f
(
x
)
must be
(
2
π
,
π
]
and hence range of
y
=
−
x
2
+
x
+
a must be
(
−
∞
,
−
1
]
∀
x
∈
(
−
∞
,
−
1
]
∴
y
=
−
(
x
2
−
x
−
a
)
=
−
[
(
x
−
2
1
)
2
−
(
a
+
4
1
)
]
⇒
y
=
a
+
4
1
−
(
x
−
2
1
)
2
⇒
y
∈
(
−
∞
,
a
−
2
]
[Maximum value occurs at
x
=
−
1
∴
a
−
2
=
−
1
⇒
a
=
1