Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f be a real valued continuous function on [0,1] and f(x)=x+∫ limits01(x-t) f(t) d t. Then which of the following points ( x , y ) lies on the curve y =f( x ) ?
Q. Let
f
be a real valued continuous function on
[
0
,
1
]
and
f
(
x
)
=
x
+
0
∫
1
(
x
−
t
)
f
(
t
)
d
t
. Then which of the following points
(
x
,
y
)
lies on the curve
y
=
f
(
x
)
?
476
165
JEE Main
JEE Main 2022
Integrals
Report Error
A
(2, 4)
B
(1, 2)
C
(4, 17)
D
(6, 8)
Solution:
f
(
x
)
=
(
1
+
0
∫
1
f
(
t
)
d
t
)
x
−
0
∫
1
t
f
(
t
)
d
t
f
(
x
)
=
A
x
−
B
.....
(i)
A
=
1
+
0
∫
1
f
(
t
)
d
t
=
1
+
0
∫
1
(
A
t
−
B
)
d
t
⇒
A
=
2
(
1
−
B
)
.....
(ii)
Also
B
=
0
∫
1
t
f
(
t
)
d
t
=
0
∫
1
(
A
t
2
−
Bt
)
d
t
A
=
2
9
B
.....
(iii)
From
(
2
)
,
(
3
)
A
=
13
18
,
B
=
13
4
so
f
(
6
)
=
8